

ЗАДАЧИ ПЕРВОГО ТУРА

ОЛИМПИАДЫ ПО СПОРТИВНОМУ ПРОГРАММИРОВАНИЮ «КУБОК ТАМТЭК»

ЗАДАЧА А. «ПЕРИМЕТР»

У математика Феди есть младший брат Коля. Коля недавно начал изучать геометрию, а это один из сложнейших школьных предметов. Федя хочет помочь Коле с темой «Периметр», которая не очень понятна Коле. Для этого Федя придумал такую игру — Федя берет 2 треугольника со сторонами А1, В1, С1 и А2, В2, С2, а Коля должен сложить 2 треугольника сторона к стороне так, чтобы периметр получившейся фигуры был минимален.

Игра захватила Колю, но у Феди много дел и мало времени для проверки – правильно ли сложил новую фигуру Коли и он решил написать программу, которая определяет, правильно ли сложил фигуры Коля.

Входные данные

В первой строке через пробел входных данных записаны три натуральных числа A1, B1, C1 — длины сторон первого треугольника.

Во второй строке через пробел входных данных записаны три натуральных числа A2, B2, C2 — длины сторон второго треугольника.

Выходные данные

Необходимо вывести одно число — минимальный периметр фигуры, который можно получить, приложив два исходных треугольника по одной стороне.

Примеры входных и выходных данных

Входные данные	Выходные данные
111	4
111	
3 4 5	23
876	

ЗАДАЧА В. «ЛАБИРИНТ И ВАСЯ»

Петя живет в городе ***. Город представляет из себя прямоугольное поле N на M клеток. В каждой клетке находится либо здание, либо улица. За одну минуту человек может перейти из одной клетки с улицей в соседнюю с ней по стороне клетку с улицей.

Петя сейчас спешит из клетки А в клетку В на важную встречу, и он хочет дойти как можно быстрее. Но он встретил своего друга Васю в клетке А, и хочет провести с ним как можно больше времени. У Васи тоже есть дела, которые он не может бросить, и он должен двигаться по строго определенному маршруту. Поэтому Петя из всех кратчайших путей хочет выбрать такой, при котором его маршрут будет как можно дольше совпадать с маршрутом Васи. Помогите Пете с выбором наилучшего пути.

Входные данные

В первой строке дается два числа — N и M, размеры города $(1 \le N, M \le 10^3)$.

Во второй строке дается 4 числа — A_x , A_y , B_x , B_y ($1 \le A_x$, $B_x \le N$, $1 \le A_y$, $B_y \le M$) — координаты клетки A и клетки B.

В третьей строке находится описание маршрута Васи в виде строки из символов L, R, D, W. i-й символ говорит о том, в каком направлении будет двигаться Вася в i-ю минуту (если L — то влево, если R — вправо, если D — вниз, если U — вверх). Длина строки не превышает 10^5 . Гарантируется, что строка задает корректный путь из точки A, т. е. Вася ни в какой момент времени не покинет город и не будет находиться внутри клетки со зданием.

В последующих N строках находится описание города. В каждой строчке находится M символов — если на j месте в i строке находится символ «_» — это означает, что в клетке с координатами i, j находится улица, если «#» — здание.

Выходные данные

Необходимо вывести описание наилучшего пути в том же формате, в котором вводится путь Васи.

Входные данные	Выходные данные
4 10	RRRURRRRRD
3 1 3 10	
RRRURRRDDRR	
#####_	
###	
##_##_	
###	

ЗАДАЧА С. «ОПЯТЬ СКОБКИ...»

Слышали ли Вы что-то о скобочных последовательностях? А знаете, что они бывают правильными и неправильными?

Вот, например — ()(()) является правильной скобочной последовательностью, потому что она может, например, встречаться в выражении (12+12):(7-(5-2)+14), а последовательности (() и ())(не являются правильными.

Заметим, что существует пять правильных скобочных последовательностей, состоящих ровно из шести скобок (по три скобки каждого типа — открывающих и закрывающих): ((())), (())), (())(), ()(()) и ()()().

А теперь представьте, что в правильную скобочную последовательность нужно добавить две скобки — открывающуюся и закрывающуюся. Так как эти скобки могут быть добавлены в разные места, то может получиться довольно много разных скобочных последовательностей.

Если в полученной последовательности добавленная открывающая скобка стоит в позиции i, а добавленная закрывающая — в позиции j, то два способа, соответствующие парам (i_1, j_1) и (i_2, j_2) , считаются различными, если $i_1 \neq i_2$ или $j_1 \neq j_2$.

Требуется написать программу, которая по заданной правильной скобочной последовательности определяет количество различных описанных выше способов добавления двух скобок.

Входные данные

Входной файл состоит из одной непустой строки, содержащей ровно 2n символов: n открывающих и n закрывающих круглых скобок. Гарантируется, что эта строка является правильной скобочной последовательностью.

Выходные данные

Выведите в выходной файл количество различных способов добавления в заданную последовательность двух скобок таким образом, чтобы получилась другая правильная скобочная последовательность.

Входные данные	Выходные данные
()	7
() ()	17
(())	21

ЗАДАЧА D. «ДОСУГ ШКОЛЬНИКОВ»

Совсем скоро закончится учебный год и учителя начальной школы уже планируют, как проведут свой отпуск, но перед этим учеников нужно сводить в парк развлечений чтобы дети закончили школу с хорошим настроением.

В игровой комнате расположено М игровых автоматов, а учеников в начальной школе $N \ (M \le N)$. Поэтому необходимо составить расписание игры на автоматах таким образом, чтобы каждый из $N \$ учеников смог поиграть на каждом из автоматов, и при этом автобус, увозящий учеников из парка развлечений, смог бы отправиться в школу как можно раньше.

Время перемещения учеников между автоматами, а также между автобусом и павильоном с автоматами считается равным нулю. Каждый из учеников в любой момент времени может как играть на автомате, так и ждать своей очереди, например, гуляя по парку. Для каждого из M автоматов известно время игры на нём t_i ($1 \le i \le M$). Прервать начатую игру на автомате невозможно. Автобус привозит всех учеников в парк одновременно в нулевой момент времени.

Требуется написать программу, которая по заданным числам N, M и t_i определяет оптимальное расписание игры на автоматах для каждого из учеников.

Входные данные

В первой строке входных данных содержатся два числа: N и M ($1 \le M \le N \le 100$). Во второй строке заданы M целых чисел t_i ($1 \le t_i \le 100$), каждое из которых задаёт время игры на i-м автомате ($1 \le i \le M$). Числа в строке разделяются одиночными пробелами.

Выходные данные

В первой строке выходных данных необходимо вывести одно число — минимально возможное время отправления автобуса из парка аттракционов. Далее необходимо вывести N расписаний игр на автоматах, по одному для каждого из учеников. Каждое расписание описывается в (M+1) строках, первая из которых — пустая, а далее следуют M строк, описывающих автоматы в порядке их посещения этим учеником. Посещение автомата описывается двумя целыми числами: номером автомата j $(1 \le j \le M)$ и временем начала игры ученика на этом автомате.

Входные данные	Выходные данные
21	4
2	1 0
	1 2
3 2	6
2 1	1 0 2 2
	1 2 2 4
	2 0 1 4

ЗАДАЧА Е. «НЕКРАСИВЫЕ ЧИСЛА»

Мир арифметики, с которым ученики знакомятся с младших классов иногда просто завораживает, когда исследуешь числа и составляющие их цифры.

Например, если взять натуральное число и начать к нему прибавлять цифры, из которого образовано это число, то получаешь другое число, а некоторые числа, например число 20 невозможно получить из другого числа выполняя описанное выше действие. Назовем такие числа – некрасивыми.

Но подобные операции можно проводить и в двоичной системе координат. Например, двоичное число 1110_2 (в десятичной системе — 14) можно получить из числа 1100_2 (в десятичной системе — 12), прибавив к последнему сумму его цифр:

$$1100_2 + 10_2 = 1110_2$$

Попробуем исследовать множество двоичных некрасивых чисел. Первые пять некрасивых чисел такие: $1 = 1_2$, $4 = 100_2$, $6 = 110_2$, $13 = 1101_2$, $15 = 1111_2$. Ну а дальше дело за Вами.

Требуется написать программу, которая определяет количество двоичных некрасивых чисел, не превосходящих заданного числа N.

Входные данные

В первой строке входного файла содержится число N, записанное в десятичной системе счисления ($1 \le n \le 10^{18}$).

Выходные данные

В единственной строке выходного файла должно содержаться единственное число — количество двоичных некрасивых чисел, не превосходящих n.

Входные данные	Выходные данные
1	1
13	4
14	4

ЗАДАЧА F. «СТОП ФЕЙК»

В одной демократической стране специальным распоряжением ввели ограничение на количество провайдеров: их всего N и каждый может иметь только один узел передачи информации. Некоторые из этих узлов соединены напрямую высокоскоростными каналами передачи информации, всего таких каналов — M.

Президент этой страны нюхом учуял, что в сети стали появляться в больших количествах «Фейковые новости» и решил оградить своих подданных от нежелательной информации. Для этого было решено закупить К анализаторов фейков «Стопфейк», выбрать К различных провайдеров и установить на их оборудовании «Стопфейк». Необходимо осуществить выбор провайдеров так, чтобы анализаторы контролировали все каналы передачи информации: для каждого канала хотя бы один анализатор должен быть установлен на узел провайдера, где начинается или заканчивается этот канал.

Напишите программу, которая проверяет, существует ли требуемое расположение анализаторов «Стопфейк», и в случае положительного ответа находит это расположение.

Входные данные

В первой строке входных данных записаны три натуральных числа — N, M и K ($K \le N \le 2000$, $1 \le M \le 10^5$, $1 \le K \le 40$). Далее следуют M строк, каждая из которых описывает один канал. Канал задаётся двумя целыми числами — порядковыми номерами узлов, которые он соединяет. Узлы пронумерованы от 1 до N. Гарантируется, что к любому узлу подведён хотя бы один канал и между любыми двумя узлами проложено не более одного канала. Числа в каждой строке разделены пробелами.

Выходные данные

В первую строку выходных данных выведите слово «Yes», если требуемое расположение анализаторов существует, в противном случае — слово «No». В случае положительного ответа выведите во вторую строку выходных данных К различных целых чисел в порядке возрастания — номера узлов, на которых необходимо установить анализаторы. Если существует несколько подходящих расположений датчиков, выведите любое из них. Разделяйте числа во второй строке пробелами.

Входные данные	Выходные данные	
212	Yes	
1 2	1 2	
3 3 1	No	
1 2		
2 3		
3 1		
762	Yes	
1 2	1 2	
1 3		
1 4		
2 5		
2 6		
2 7		
5 5 2	Yes	
1 2	1 4	
1 3		
1 4		
15		
4 5		

Комментарии

Решения, корректно работающие при N, M \leq 100 и K \leq 10, будут оцениваться из 60 баллов.

